G.654.E光缆测试解决方案

目前陆地干线传输线路中的光纤类型以G.652D为主,随着WDM系统单载波速率超过100G,光纤的非线性效应对传输性能的影响愈加严重,科研人员很自然地想把G.654光纤移植到陆地长途干线传输系统中使用。相对于海底使用,陆地用G.654光纤的宏弯损耗要求要严格得多,而对光纤的有效面积、衰减指标则要比海底用要求宽泛,这样就形成了G.654.E光纤的标准。G.654光纤各个子类的主要传输指标差异见下表。

增强数字无线通信设备的性能

随着世界上许多地区的专网通信正从模拟制式向数字制式演进,我们必须认识到数字无线通信设备需要进行比模拟设备更加精确的校准才能够实现其最佳性能。校准过程需要测试和验证大量基于射频参数的特性和数值,如此才能最大程度地体现数字技术所带来的更高性能。

4X100GE DR4 分支测试

随着互联网内容提供商推动其超大规模数据中心,这对带宽提出了更高的需求,但是供电和机架空间是有限的,网络设备制造商因此继续寻找方法,在不显著增加设备占用空间的情况下提高端口密度。例如,NEM 正在利用不断出现的更小封装的 400GE 光模块(如 QSFP-DD),向后兼容更低速率封装的可插拔模块。它们还支持更节省空间的新型光学接口,如 DR4 (IEEE 802.3 bs,将 400GE 带宽以光学方式分割为 4 个独立的 100GE 信号,可连接到另一端的 4 个独立的 100GE QSFP28 端口)。与具有 128 个 100GE QSFP28 端口的交换机当前占用的机架空间相比,配备 32 个 QSFP-DD 的网元可以配置为在更合理的空间内承载 128 个 100GE 信号。

QSFP-DD 模块测试

QSFP-DD 光模块是 400G 客户侧接口的主流封装规格。本白皮书为模块开发人员、网络元件制造商和最终用户分享了 QSFP-DD 模块成功测试、故障排查和验证的关键因素。
客户侧接口速度稳步增长,典型的速率每十年至少增加十倍。100GE 已经通过 QSFP28 接口广泛部署,我们正处于 400G 部署的早期阶段。作为 2017 年 12 月正式标准化的 802.3.bs 的一部分,IEEE 开发了 400G 以太网客户侧接口标准。早期采用者使用的是 CFP8封装规格,但更广泛的市场关注的是 QSFP-DD,它允许与广泛采用的 QSFP28 实现一定程度的向后兼容。

FPGA、CPU和DSP电源序列验证方案

为FPGA或CPU等复杂的电子元件供电时,需要根据特定顺序以及延迟或上升时间启用多个电源电压。必须将电源消耗降至最低,并确保I/O在上电时处于高阻状态。通常建议断电顺序需与上电顺序相反。如果不按序操作,电流会超出指定阈值,可能会造成组件故障或损坏。在电路设计过程中,必须捕获并分析多个电压在电源启动、关闭和故障期间的相关特性。

PCIe 5.0 全协议栈验证

协议分析器是一个通用的 PCI Express 工具,用于总线吞吐量和链路性能测量以及数据包监控和记录。
干扰器可以操纵实时流量来实时模拟错误。
PCI SIG定义了练习器,用于测试和验证PCIe设备(CPU、交换、桥接和终端)是否符合标准。PCIe练习器生成与PCIe兼容的数据流和数据包,并可以适当地响应被测设备(DUT)—模拟真实的PCI设备

PCIe5.0电气测试—电气子层和逻辑子层

PCIe测试的关键设备包括误码率测试仪(BERT)和实时示波器。特别是PCIe5.0测试,要求使用高质量BERT的脉冲码型发生器(PPG)和BERT的误码分析仪(ED)。PPG需要能精确生成特定损耗的信号,ED应能够分析SerDes输出误码率(BER)以确定待测件是否符合PCIe规范。

PCIe5.0 信道损耗特性测试

信道是PCI Express系统中的关键要素。通道中有许多失真来源,它们会降低从 PCIe发射机到PCIe接收机的信号质量——包括串扰、抖动、符号间干扰(ISI)等等。必须测量信道中的损耗特征,确保它们处在PCIe对特定数据速率的容限范围之内。散射参数(S参数)可以表征高频电路,比如 PCIe 系统中的信道。使用矢量网络分析仪可以帮助快速验证设计中的各种参数,确保它们符合 PCIe 规范的性能要求。

400G光模块芯片测试方案

光模块芯片的频域测试,是测量和评估光模块芯片频域带宽、反射、群延时等特性的关键测试步骤,是晶片在片测试、器件封装测试等工艺流程中的必须工序。