MPO 连接器测试
MPO 连接器测试

MPO 连接器测试

MPO 连接器效率

多光纤推进 (MPO) 连接器可高效利用空间,从而提高数据容量。但用户也面临着诸多难题,比如,对多光纤网络进行测试以及故障排查时更加复杂,而且需要更多的时间来完成。借助完整的 MPO 连通性测试解决方案产品组合,VIAVI 可帮助克服这些难题。

多光纤 (MPO) 连接器测试要点

尽管 MPO 连接器与典型的单光纤连接器相比有许多优点,但存在的一些差异也为技术人员带来了新的挑战。此文概述了技术人员在测试 MPO 连接器时必须了解的基本信息。

什么是 MPO 连接器?

多光纤推进 (MPO) 是一种光纤连接器类别,它利用一个横穿单根套管的线性光纤阵列。MPO 连接器最常见的应用是在高密度的室内环境中对多光纤带状连接进行端接。

MPO 连接器已经成为密集主干光缆的标准接口,最近在接线板、服务器和交换机应用中得到了更广泛的使用。一个 MPO 连接器可以替代多个SC或 LC 连接,在相同的空间占用大小下可节省 12 倍(或更多)的光纤密度空间,同时可简化安装。 

IEC-61754-7(国际)和 TIA 604-5(美国)标准中已经定义了 MPO 连接接口 。

MPO 连接器类型

MPO 光纤连接器的外部形状因子包括一个模塑的矩形塑料外壳,该外壳的一侧为配合和光纤定位采取了“键控”形式。当此键位于“向上”位置时,光纤 1 位于左侧。MPO 连接器外壳采用推拉闭锁机制与可听见的咔嗒声,使连接快速和可靠。

MPO 连接器应用的密度可以在 8、12、24、32 或 48 根光纤之间变化,也可以在特殊的高密度应用中选择 60 和 72 根光纤。12 和 24 光纤选项是目前最常用的,12 光纤连接器 (MPO-12) 是第一个在数据中心应用中获得广泛接受的。24 光纤连接器已经被证明是许多 40 G(8 光纤)和 100 G(24 光纤)设备连接的数学便捷解决方案 ,从而使 MPO-24 最近的利用率得到增长。

尽管 12 光纤和 24 MPO 光纤连接器的连接器外壳尺寸相同,但 24 光纤选项包括第二行的 12 根光纤。同样,48 和 72 光纤 MPO 连接器分别包含 4 行和 6 行光纤。

16 和 32 光纤 MPO 连接器每行包含 16 根光纤,而不是 12 根。这种格式是专门为 400G 应用开发的。可以为多模以及单模光纤使用 MPO 技术。多模连接器使用平面套管,而单模连接器使用 8 度角的套管,目的是为了减少反射。由于这些连接器外形相似,但彼此不兼容,因此使用颜色编码可以很容易地将一种类型与另一种类型区分开来。

MPO 与 MTP 连接器

尽管术语 MPO 和 MTP 有时可以互换使用,但 MTP 是由 US Conec 生产的特定多光纤连接器的商标名,代表“多光纤终端推进”。MTP 连接器固有的专有设计特性包括:在负载条件下改善校准和性能的浮动套管,以及用于优化校准和耐久性的椭圆导销。

连接器外壳内的机械升级也提高了可靠性。这包括改善了带隙的改进弹簧设计、可方便在现场进行连接器性别修改和套管抛光的可移动的外壳,以及改进的测试通路。

所有 MTP 连接器也都是 MPO 连接器,但并非所有 MPO 连接器都是 MTP 连接器。MTP 连接器与它的通用 MPO 式对等物是 100% 相互匹配的,但根据更严格的设计公差和特性集的差异,MPO 连接器在高性能应用中并不等同于 MTP。MTP 连接器符合适用于标准 MPO 连接器的同一美国和国际标准。与标准 MTP 连接器相比,MTP 连接器的“Elite”版本还可以减少插入损耗。

MPO 检测和污染

进行清洁和检测来控制 MPO 连接器污染是必要的最佳实践。连接到 MPO 连接器上的多根光纤中的每一根都会从套管中延伸出一小段距离,这意味着当 MPO 连接器配对时,光纤终端会物理接触。因此,这些配对表面的清洁至关重要。大的 MPO 表面积和隔板通道为污染物渗透连接器提供了充足的机会。

光纤末端表面的数量也会成倍地增加污染的可能性。举例来说,如果我们假设每个光纤表面有 90% 的可能性被污染,那么 MPO-12 中至少有一根光纤表面被污染的可能性就是 0.9012 或 28%。光纤一端的污染可能引致会沿线路一直传播或使邻近光纤失准的菲涅耳空气间隙,从而对其他光纤产生有害影响。

应检查每个光纤端面有无灰尘、油污、划痕或任何其他污染物。如果检测到任何污染,使用专用的 MPO 清洁工具和溶液进行清洁是应采取的合理措施,因为错误的清洁工具可能会损坏端面。清洁之后,应在安装前再重新检查一次来进行验证。应不断循环执行这个清洁-检测过程,直至未检测到任何污染为止。获取更多光纤检测最佳实践。

MPO 极性

光网络中的极性一词用来描述光链路的发射端和接收端之间光纤的正确匹配。由于每个连接器内的光纤密度增加,MPO 连接器可能会使极性问题复杂化。与 SC 或 LC 光纤连接不同,简单的 VFL 检查无法完全验证极性或连续性。由于光纤位置固定在每个连接器中,因此,如果检测到极性问题,将无法简单地移动光纤。MPO 连接器采用了三种不同的极性方法,增加了额外的复杂性。

A型

称为直通法。使用这种极性约定,位于“键向上”位置的第一个连接器将连接到位于“键向下”位置的第二个连接器。在这个方向上,第一个连接器位置 1 中的光纤将连接到相邻连接器中的光纤位置 1 以及 2、3、4 等光纤。

B型

这有时称为“倒转”或“翻转”方法。在这种配置中,两个连接器都处于“键向上位置”,但是相应光纤的编号将颠倒过来。例如,使用 MPO-12 连接器,第一个连接器中的光纤 1 将连接到第二个连接器中的光纤位置 12,光纤 2 将连接到光纤位置 11,等等。这种约定通常用于 40/100G 架构。

C型

这也称为双绞线或“成对翻转”的方法。由于每组 2 根光纤都是翻转的,光纤 1 将连接到相邻连接器的光纤 2 位置,而光纤 2 将连接到光纤 1 位置。同样的交换也适用于每一对离散的光纤。这种配置通常出现在 1/10G 架构中。

MPO 对准

理想的光纤连接将完美地对准光纤,光能不会损耗。不幸的是,连接器和光纤本身固有的制造公差使得这种完美的对准情况几乎不可能实现。

单工型光纤连接在一个圆柱形陶瓷对开套管中捕获两个匹配的圆柱形光纤端,使得匹配光纤的对准非常简单。MPO 连接器带来了同时进行多光纤对准和将一个连接器与另一个连接器分开的适配器开放通道的组合挑战。由于每根光纤之间的距离和间隔可能造成横向偏移和其他潜在的未对准情况,因此多根光纤位置会使公差叠加。

为了实现最佳的对准,MPO 光纤连接器利用一个连接器上的两个不锈钢定位销和在配对部分相同的相对位置上的两个孔进行对准。这也称为“公头”和“母头”配置,尽管我们通常会使用“有引脚”和“无引脚”这样的命名法。一些制造商确实提供了带有可拆卸/可替换引脚的连接器选项,尽管大多数处于任一状态的连接器都不能在现场更改,这意味着相同类型的两个连接器不能相互配对。

可以接受有引脚或无引脚连接器的 MPO 测试设备可以简化在 MPO 测试中遇到的对准/配置问题。在参考验证测试期间,可以使用有引脚跳线来补全两个无引脚线缆连接器终端之间的电路。

MPO 连接器损耗

使用专为单光纤应用设计的工具执行 MPO 检查和企业测试可能非常麻烦和耗时。随着本机 MPO 现在直接在 40/100 G 应用中的交换机、路由器和服务器上运行,高级测试变得更加重要,因此需要使用带有本机 MPO 端口的测试设备来有效地测试这些链路和通道。

使用传统的单光纤检测工具检测 MPO 连接器比较困难,因为 MPO 接口会带来独特的接入和几何结构方面的难题。可以向针对单光纤连接设计的显微镜中添加专门的 MPO 检测提示,但这种适应过程可能非常耗时。自主的多光纤检测解决方案可以充分应对 MPO 应用中端面检测的重要性,同时进一步自动化检测实践。

一级长度、损耗和极性测试可以用传统的 OLTS 和分支线缆通过 LC 或 SC 输入端口来完成,但是这个过程通过引入专用的 MPO OLTS 设备得到了显著的改进。同样,带有专用 MPO 交换机端口的 OTDR 测试设备可以方便地在整个测试过程中循环检查多条光纤。

MPO 测试所面临的挑战

使用专为单光纤应用设计的工具执行 MPO 检查和企业测试可能非常麻烦和耗时。随着本机 MPO 现在直接在 40/100 G 应用中的交换机、路由器和服务器上运行,高级测试变得更加重要,因此需要使用带有本机 MPO 端口的测试设备来有效地测试这些链路和通道。

使用传统的单光纤检测工具检测 MPO 连接器比较困难,因为 MPO 接口会带来独特的接入和几何结构方面的难题。可以向针对单光纤连接设计的显微镜中添加专门的 MPO 检测提示,但这种适应过程可能非常耗时。自主的多光纤检测解决方案可以充分应对 MPO 应用中端面检测的重要性,同时进一步自动化检测实践。

一级长度、损耗和极性测试可以用传统的 OLTS 和分支线缆通过 LC 或 SC 输入端口来完成,但是这个过程通过引入专用的 MPO OLTS 设备得到了显著的改进。同样,带有专用 MPO 交换机端口的 OTDR 测试设备可以方便地在整个测试过程中循环检查多条光纤。